Author Affiliations
Abstract
1 Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
2 Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
3 Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Renewable Energy Conversion and Storage Center, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin 300071, China
Although previously reported terahertz absorbers can achieve high-sensitivity refractive index sensing, the resonant peak is too broad, which leads to a low figure of merit (FOM). Transmissive sensors based on bound states in the continuum (BIC) can achieve high FOM, but they have some limitations in high sensitivity. Herein, we propose a periodic triple parallel metal bars structure to obtain high quality, a strong field, and multiple hot spots by the Friedrich–Wintgen BIC. Numerical results show the sensitivity and FOM can reach 1877 GHz/RIU and 665, respectively. Compared to the previously reported transmissive sensors based on BIC, the sensitivity has been greatly improved.
Fano resonance bound states in the continuum terahertz high-sensitivity sensing 
Chinese Optics Letters
2023, 21(3): 031202
刘占锋 1,2曹文静 1,2孙非 1,2陈智辉 1,2,*
作者单位
摘要
1 太原理工大学 1.新型传感器与智能控制教育部/山西省重点实验室
2 2. 物理与光电工程学院, 太原 030024
提出了一种三角形硅二聚体纳米天线结构, 该结构可以从激发和发射过程同时提高荧光物质的荧光发光效率, 并且实现荧光的远场定向发射增强。利用时域有限差分法详细研究了不同组合方式的三角形二聚体、不同三角形直角边长以及不同二聚体底角间距对荧光发射增强效果的影响, 并进行了结构参数的优化, 研究了该结构对荧光激发过程的影响。结果表明, 三角形硅二聚体纳米天线结构的直角边长为300nm, 二聚体底角间距为0nm是纳米天线的最优参数。相对于裸光源, 硅二聚体纳米天线使点光源的荧光发射增强了7倍, 实现了远场定向发射。而且, 在405nm波长光的激发下, 荧光激发过程也得到了增强。
荧光传感 纳米天线 米氏共振 定向发射 fluorescence sensing nano antenna Mie resonance directional emission 
半导体光电
2020, 41(5): 689
Author Affiliations
Abstract
1 Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
2 Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, National Engineering Research Center for Optical Instruments, Zhejiang University, Hangzhou 310058, China
A novel way to design arbitrarily shaped retro-reflectors by optics surface transformation is proposed. The entire design process consists of filling an optic-null medium between the input and output surfaces of the retro-reflector, on which the points have 180 deg reverse corresponding relations. The retro-reflector can be designed to be very thin (a planar structure) with high efficiency. The effective working angles of our retro-reflector are very large (from ?80 deg to +80 deg), which can, in principle, be further extended. Layered metal plates and zero refractive index materials are designed to realize the proposed retro-reflector for a TM polarized beam.
retro-reflector optics surface transformation 
Chinese Optics Letters
2020, 18(10): 102201
作者单位
摘要
1 中国计量大学光学与电子科技学院, 浙江 杭州 310018
2 浙江省现代计量测试技术及仪器重点实验室, 浙江 杭州 310018
不同人群对不同种类的花粉存在不同的过敏反应,为此研究用于快速检测空气中花粉粒子及分类的方法。以常见花粉作为研究对象,利用拉曼光谱仪采集42种花粉样品的465条拉曼光谱数据,按照生物学分类划分为科间花粉及属间花粉并对其进行分类预测。将所得光谱数据预处理后,利用主成分分析提取光谱的特征信息,并建立支持向量机识别模型。对于科间花粉的预测结果准确率为97.75%,蔷薇科属间花粉的预测结果准确率为90.47%,说明拉曼光谱分析法对花粉分类鉴别具有可行性。
光谱学 拉曼光谱 花粉识别 主成分分析 支持向量机 
激光与光电子学进展
2020, 57(13): 133001
王赟 1,2金尚忠 1,2,*陈智慧 1,2侯彬 1,2曹馨艺 1,2
作者单位
摘要
1 中国计量大学 光学与电子科技学院, 杭州 310018
2 浙江省现代计量测试技术及仪器重点实验室, 杭州 310018
借助偏振成像可以增强水下目标的探测效果。传统的偏振成像方法需要光学检偏器的机械转动来实现, 这限制了其在水下的实时探测性能。采用基于像素偏振片阵列图像传感器开发的相机设计了一种水下实时成像系统。系统通过阵列上排布的四向微偏振片一次性捕获四向偏振图像, 从而全局估算背景杂散光的偏振角和偏振度。然后利用偏振信息反解得到杂散光光强, 最后借助水下成像物理模型得到去散射后的目标增强图像。实验结果表明, 将像素偏振片阵列图像传感器应用到水下成像能够有效增强水下图像的对比度, 且成像处理过程实时快速, 进一步提高了水下目标的探测效率。
像素偏振片阵列 偏振成像 图像处理 水下目标成像 对比度增强 pixelated micropolarizer array polarization imaging image processing underwater target imaging contrast enhancement 
半导体光电
2019, 40(6): 879
全宏升 1,2曹文静 1,2陈智辉 1,2,*
作者单位
摘要
1 太原理工大学 1. 新型传感器与智能控制教育部/山西省重点实验室
2 2. 物理与光电工程学院, 太原 030024
为了增强量子点的定向发光强度, 提出了一种由硅柱二聚体和二氧化钛圆盘组成的复合纳米天线结构。利用时域有限差分方法系统研究了硅柱二聚体的轴参数、截面类型以及复合纳米天线结构对量子点定向发光增强的影响。结果表明, 对于中心波长为600nm的量子点, 硅柱二聚体的轴参数对量子点的发光影响不大, 椭圆形截面的硅柱二聚体可以实现较大的量子点发光增强。此外, 在复合纳米天线的作用下, 不仅可以获得较大的量子效率增强, 还可以实现量子点高度定向的发射效果, 量子效率增强约6倍, 定向收集效率可以达到50%。
荧光传感器 硅柱二聚体 二氧化钛圆盘 定向发射 fluorescence sensor silicon column dimer TiO2 disk directional emission 
半导体光电
2019, 40(5): 631
郭帅 1,2赵金凤 3陈智辉 1,2,*
作者单位
摘要
1 太原理工大学物理与光电工程学院, 山西 太原 030024
2 新型传感器与智能控制教育部/山西省重点实验室, 山西 太原 030024
3 大同大学数学与计算机科学学院, 山西 大同 037009
为了提高生物检测的灵敏度, 增强量子点的远场定向发光强度显得尤为重要。因此提出一种周期分布在SiO2隔层及金属银反射板上的金属银纳米屋顶结构, 其中每个屋顶结构的半径为162.5 nm, 且量子点位于中间两个屋顶结构的缝隙内。使用时域有限差分算法, 研究了量子点位于不同位置以及不同数量的金属银纳米屋顶结构对量子点远场发光强度的影响。计算表明当有四个纳米屋顶结构, 且量子点处于中间两个屋顶结构的缝隙内部时, 可以有效地提高量子点的远场发光强度, 相较没有屋顶结构时发光强度提高了4倍以上, 从而可以提高生物检测的灵敏度。
表面光学 量子点 发射 银纳米屋顶结构 表面等离子体共振 远场 
激光与光电子学进展
2018, 55(10): 102402
韩昌盛 1,2,*杨毅彪 1,2王云才 1,2费宏明 1,2[ ... ]李祥霞 1,2
作者单位
摘要
1 太原理工大学 物理与光电工程学院
2 新型传感器与智能控制教育部重点实验室,太原 030024
采用平面波展开法分别模拟了空气背景下由介质圆柱和方柱构造的二维Archimedes (4,82)复式晶格光子晶体的能带结构,讨论了介质柱形状、折射率、填充比和旋转对称性等因素对完全光子禁带的影响.研究发现,当折射率在2.60到5.40之间时,介质圆柱和方柱构造的二维Archimedes (4,82)复式晶格光子晶体都出现了完全光子禁带.随着折射率的增大,最大完全禁带宽度并非随之增大而是存在峰值,介质圆柱型晶格在折射率为2.80时出现峰值;介质方柱型晶格在折射率为2.80和4.40两处出现峰值,且旋转介质方柱能够明显增大禁带宽度,同时存在最佳旋转角度.分析结果表明,在最大完全禁带处,折射率、填充比以及旋转角度等因素的变化对禁带特性的影响很小.
人工晶体 光子带隙 平面波展开法 光子晶体 Archimedes晶格 Maxwell方程 超材料 光子器件 光子集成技术 Synthetic crystals Photonic band gap Plane wave expansion method Photonic crystals Archimedes lattice Maxwell equations Metamaterials Photonic devices Photonic integration technology 
光子学报
2014, 43(6): 0616003
周飞 1,2,*费宏明 1,2陈智辉 1,2刘欣 1,2杨毅彪 1,2
作者单位
摘要
1 太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024
2 太原理工大学物理与光电工程学院, 山西 太原 030024
基于不同结构的光子晶体具有不同禁带范围的特性,设计了一种光子晶体偏振光分束器,通过平面波展开法与时域有限差分法进行数值计算与模拟分析。结果表明,该分束器能够实现电磁波的高效分束:波长为1.5~1.58 μm范围内电磁波入射时,TE模和TM模的透射率均高于92%;尤其是波长为1.55 μm的电磁波入射时,TE模透射率可达95.5%,TM模透射率可达99%。同时,其尺寸仅为10 μm×11.5 μm。这些特性使其具有良好的应用前景。
光电子学 光子晶体偏振光分束器 平面波展开法 时域有限差分法 
激光与光电子学进展
2013, 50(6): 062304

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!